182 research outputs found

    Code-Aided Channel Estimation in LDPC-Coded MIMO Systems

    Full text link
    For a multiple-input multiple-output (MIMO) system with unknown channel state information (CSI), a novel low-density parity check (LDPC)-coded transmission (LCT) scheme with joint pilot and data channel estimation is proposed. To fine-tune the CSI, a method based on the constraints introduced by the coded data from an LDPC code is designed such that the MIMO detector exploits the fine-tuned CSI. For reducing the computational burden, a coordinate ascent algorithm is employed along with several approximation methods, effectively reducing the required times of MIMO detection and computational complexity to achieve a satisfying performance. Simulation results utilizing WiMAX standard LDPC codes and quadrature phase-shift keying (QPSK) modulation demonstrate gains of up to 1.3 dB at a frame error rate (FER) of 10410^{-4} compared to pilot-assisted transmission (PAT) over Rayleigh block-fading channels.Comment: This paper has been accepted by IEEE Wireless Communications Letter

    Ultrasensitive label-free detection of circulating tumor cells using conductivity matching of two-dimensional semiconductor with cancer cell

    Get PDF
    Abstract(#br)The excellent conductivity matching of two-dimensional (2D) semiconductor nanomaterials (e.g. MoS 2 ) with cancer cell plays an important role in ultrasensitive label-free impedimetric detection of circulating tumor cells (CTC) (<1 cell/mL). Firstly, 2D semiconductor materials (e.g. 2D MoS 2 ) exfoliated by folic acid (FA) is used to construct MoS 2 /FA-modified gold electrode (AuE/MoS 2 /FA). Then, the fabricated electrode is applied for HeLa cell detection in a linear range from 1 to 10 5 cell/mL with a detection limit of 0.43 cell/mL (S/N = 3). The detection mechanism of high sensitivity might be owing to the electric conductivity matching of MoS 2 (0.14 S/m) to cancer cell (0.13–0.23 S/m). A negligible conductivity change induced by cancer cell will produce a large impedance change of semiconductor electrode. Furthermore, HeLa cells dispersed in healthy blood samples are detected by suggested cytosensor in a linear range from 50 to 10 5 cell/mL with a detection limit of 52.24 cell/mL (S/N = 2). Finally, we demonstrate that the cytosensor is capable of differentiating patients of cervical and liver cancers by the real CTC analysis from healthy control

    Supported monodisperse Pt nanoparticles from [Pt-3(CO)(3)(mu(2)-CO)(3)](5)(2-) clusters for investigating support-Pt interface effect in catalysis

    Get PDF
    MOST of China [2011CB932403]; NSFC [21131005, 21021061, 20925103, 20923004]; Fok Ying Tung Education Foundation [121011]Here we present a surfactant-free strategy to prepare supported monodisperse Pt nanoparticles from molecular [Pt-3(CO)(3)(mu(2)-CO)(3)](5)(2-) clusters. The strategy allows facile deposition of same-sized Pt nanoparticles on various oxide supports to unambiguously study the interface effect between noble metal and metal oxide in catalysis. In this study, Fe2O3 is demonstrated to be a superior support over TiO2, CeO2 and SiO2 to prepare highly active supported Pt nanoparticles for CO oxidation, which indicates that the interfaces between Pt and iron oxide are the active sites for O-2 activation and CO oxidation

    High-sensitivity magnetic sensor based on the evanescent scattering by a magnetorheological film

    Get PDF
    We present a simple concept to implement a magnetic sensor that uses evanescent scattering by a suspended magnetorheological (MR) film above a planar waveguide. The soft MR film embedded with ferromagnetic particles is to induce scattering on the evanescent field of a planar waveguide at a proximity distance. This distance can be controlled precisely by a magnetic field. Consequently, the waveguide output power changes in response to the magnetic intensity. Two sensor prototypes of different film thicknesses were designed and tested showing a trade-off between the sensitivity and dynamic sensing range. A maximum sensitivity of ∼2.62dB/mT was obtained. Compared to optical micro-electromechanical systems, the presented sensors feature a simple design, easy fabrication, low cost, and the potential for large-scale production and miniaturization to be integrated into portable devices

    Small molecules control the formation of Pt nanocrystals: a key role of carbon monoxide in the synthesis of Pt nanocubes

    Get PDF
    通讯作者地址: Zheng, NF (通讯作者), Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China 地址: 1. Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China 2. Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China 电子邮件地址: [email protected], [email protected] many previous studies, nonaqueous synthesis of Pt nanocubes with tunable size has been achieved by the use of metal carbonyls (e.g., Fe(CO)(5), Co-2(CO)(8), W(CO)(6)). The presence of zero-valent metals in the carbonyls was demonstrated as the key factor to the nanocube formation but the role of CO was entirely ignored. By using CO alone, we have now demonstrated that the favorable growth of Pt nanocubes in the presence of CO is mainly owing to the effect that the Pt (100) surface is stabilized by the co-adsorption of CO and amine.NSFC 20925103,20871100,20721001; Fok Ying Tung Education Foundation,121011; MSTC,2011CB932403,2009CB930703; NSF of Fujian Province,2009J06005; Key Scientific Project of Fujian Province 2009HZ0002-

    Imaging and Pathological Features of Percutaneous Cryosurgery on Normal Lung Evaluated in a Porcine Model

    Get PDF
    Background and objective Lung cancer is one of the most commonly occurring malignancies and frequent causes of death in the world. Cryoablation is a safe and alternative treatment for unresectable lung cancer. Due to the lung being gas-containing organ and different from solid organs such as liver and pancreas, it is difficult to achieve the freezing range of beyond the tumor edge 1 cm safety border. The aim of this study is to examine the effect of different numbers of freeze cycles on the effectiveness of cryoablation on normal lung tissue and to create an operation guideline that gives the best effect. Methods Six healthy Tibetan miniature pigs were given a CT scan and histological investigation after percutaneous cryosurgery. Cryoablation was performed as 2 cycles of 10 min of active freezing in the left lung; each freeze followed by a 5 min thaw. In the right lung, we performed the same 2 cycles of 5 min of freezing followed by 5 min of thawing. However, for the right lung, we included a third cycle of consisting of 10 min of freezing followed by 5 min of thawing. Three cryoprobes were inserted into the left lung and three cryoprobes in the right lung per animal, one in the upper and two in the lower lobe, so as to be well away from each other. Comparison under the same experimental condition was necessary. During the experiment, observations were made regarding the imaging change of ice-ball. The lungs were removed postoperatively at 3 intervals: 4 h, 3 d of postoperation and 7 d of postoperation, respectively, to view microscopic and pathological change. Results The ice-ball grew gradually in relation to the increase in time, and the increase in number of cycles. The size of the cryolesion (hypothesis necrotic area) in specimens, over time, became larger in size than the size of the ice-ball during operation, regardless of whether 2 or 3 freeze-thaw cycles were performed. The area of necrosis was gradually increased over the course of time. The hypothesis necrotic area was equal to necrosis area 3 d after cryosurgery. Conclusion Percutaneous cryoablation of the lung can achieve complete ablation of target tissue. The freezing technique may be different depending on the individual circumstances of each tumor. In technology, 3 freeze-thaw cycles are recommended, and the range of cryoablation’s effective diameter may be not necessarily beyond the tumor edge at least 1 cm safe border during cryosurgery

    Plasma and Serum Proteins Bound to Nanoceria: Insights into Pathways by which Nanoceria May Exert Its Beneficial and Deleterious Effects \u3cem\u3eIn Vivo\u3c/em\u3e

    Get PDF
    Nanoceria (CeO2, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. In blood, nanoceria becomes protein-coated, changing its surface properties to yield a different presentation to cells. There is little information on the interaction of nanoceria with blood proteins. The current study is the first to report the proteomics identification of plasma and serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum proteins interacting with nanoceria, proteins whose normal activities regulate numerous cell functions: antioxidant/detoxification, energy regulation, lipoproteins, signaling, complement, immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein folding, protease inhibition, adhesion, protein/RNA degradation, and hormonal. The principal implications of this study are: 1) The protein corona may positively or negatively affect nanoceria cellular uptake, subsequent organ bioprocessing, and effects; and 2) Nanoceria adsorption may alter protein structure and function, including pro- and inflammatory effects. Consequently, prior to their use as therapeutic agents, better understanding of the effects of nanoceria protein coating is warranted

    A Selective Small Molecule DNA2 Inhibitor for Sensitization of Human Cancer Cells to Chemotherapy

    Get PDF
    Cancer cells frequently up-regulate DNA replication and repair proteins such as the multifunctional DNA2 nuclease/helicase, counteracting DNA damage due to replication stress and promoting survival. Therefore, we hypothesized that blocking both DNA replication and repair by inhibiting the bifunctional DNA2 could be a potent strategy to sensitize cancer cells to stresses from radiation or chemotherapeutic agents. We show that homozygous deletion of DNA2 sensitizes cells to ionizing radiation and camptothecin (CPT). Using a virtual high throughput screen, we identify 4-hydroxy-8-nitroquinoline-3-carboxylic acid (C5) as an effective and selective inhibitor of DNA2. Mutagenesis and biochemical analysis define the C5 binding pocket at a DNA-binding motif that is shared by the nuclease and helicase activities, consistent with structural studies that suggest that DNA binding to the helicase domain is necessary for nuclease activity. C5 targets the known functions of DNA2 in vivo: C5 inhibits resection at stalled forks as well as reducing recombination. C5 is an even more potent inhibitor of restart of stalled DNA replication forks and over-resection of nascent DNA in cells defective in replication fork protection, including BRCA2 and BOD1L. C5 sensitizes cells to CPT and synergizes with PARP inhibitors
    corecore